NPN Silicon RF power transistor ## **MRF486** #### NPN SILICON RF POWER TRANSISTOR designed primarily for application as a high-power linear amplifier from 1.5 to 30 MHz, in single sideband mobile, marine and base station equipment. - Low-Cost, Common-Emitter TO-220 Package - Specified 28 Volt, 30 MHz Performance — Output Power = 40 W (PEP) Power Gain = 15 dB Min Efficiency = 40% Min - Intermodulation Distortion @ 40 W (PEP) — IMD = -30 dB (Max) - 30:1 VSWR Load Mismatch Capability at Rated Output Power and Supply Voltage 40 W (PEP) - 30 MHz RF POWER TRANSISTOR NPN SILICON # MAXIMUM RATINGS | Rating | Symbol | Value | Unit | |---|------------------|-------------|----------------------------| | Collector-Emitter Voltage | VCEO | 35 | Vdc | | Collector-Base Voltage | V _{CBO} | 65 | Vdc | | Emitter-Base Voltage | VEBO | 4.0 | Vdc | | Collector Current — Continuous | l _C | 3.0 | Adc | | Withstand Current
(t = 5.0 s) | | 6.0 | Adc | | Total Device Dissipation @ T _C = 25°C (1) Derate above 25°C | PD | 87.5
0.5 | Watts
W/ ^O C | | Storage Temperature Range | T _{sto} | -65 to +150 | °c | ### THERMAL CHARACTERISTICS | Characteristics | | Symbol | Max | Unit | | |-----------------|----------------------------------|-------------------|-----|------|--| | Thern | nal Resistance, Junction to Case | R ₀ JC | 2.0 | °C/W | | (1) These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as RF amplifiers. www.eleflow.com ## ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted) | Characteristic | Symbol | Min | Тур | Max | Unit | |--|----------------------|-------|---|----------------|------| | OFF CHARACTERISTICS | | | | | | | Collector-Emitter Breakdown Voltage
(IC = 50 mAdc, Ig = 0) | BVCEO | 35 | - " | - | Vdc | | Collector-Emitter Breakdown Voltage
(IC = 50 mAdc, VBE = 0) | BVCES | 65 | 7 - 7 | - | Vdc | | Collector-Base Breakdown Voltage
(IC = 50 mAdc, IE = 0) | BVCBO | 65 | , , , , , , , , , , , , , , , , , , , | , - | Vdc | | Emitter-Base Breakdown Voltage (IE = 5.0 mAdc, IC = 0) | BVEBO | 4.0 | - | - | Vdc | | Collector Cutoff Current
(VCE = 28 Vdc, VBE = 0, TC = 25°C) | CES | - | - | 10 | mAdc | | ON CHARACTERISTICS | | | | | | | DC Current Gain
(I _C = 2.0 Adc, V _{CE} = 5.0 Vdc) | , hFE | 10 | 40 | 7- | | | DYNAMIC CHARACTERISTICS | | | | | | | Output Capacitance
(V _{CB} = 27 Vdc, I _E = 0, f = 1.0 MHz) | C _{ob} | - | 130 | 200 | pF | | UNCTIONAL TESTS | | | | | | | Common-Emitter Amplifier Power Gain
(V _{CC} = 28 Vdc, P _{Out} = 40 W (PEP), f1 = 30 MHz,
f2 = 30.001 MHz, I _{CQ} = 40 mAdc) | GPE | 15 | 17.5 | | dB | | Collector Efficiency
(V _{CC} = 28 Vdc, P _{OUt} = 40 W (PEP), f1 = 30 MHz
f2 = 30.001 MHz, I _{CQ} = 40 mAdc) | η | 40 | 45 | - | % | | Intermodulation Distortion (1)
(V _{CC} = 28 Vdc, P _{Out} = 40 W (PEP), f1 = 30 MHz,
f2 = 30.001 MHz, I _{CQ} = 40 mAdc) | IMD(d ₃) | n = 1 | -35 | -30 | dB | (1) To MIL-STD-1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone. ### FIGURE 1 - 30 MHz TEST CIRCUIT